Moving Traps Offer Fast Delivery of Cold Ions

نویسنده

  • Christian Roos
چکیده

Quantum physics experiments with trapped atoms or ions often require that the particles occupy the lowest quantum state of the trapping potential. This presents a challenge when the particles need to be moved to a different location in order to perform, for example, a quantum computation. Previous experiments succeeded in transporting trapped ions, albeit slowly, by modifying the trapping potential in such a way that the particles remain in the lowest energy state throughout the transport. Two groups of researchers have now succeeded in considerably speeding up ion transport in microfabricated ion traps. As described in separate papers in Physical Review Letters[1, 2], the teams propelled the motion by strongly exciting the ions for a short time before returning them to their initial state at the end of the transport. The demonstration of fast transport that preserves the motional state of trapped ions opens up interesting perspectives in the context of quantum information processing with trapped ions in multiplexed ion traps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiofrequency multipole traps: Tools for spectroscopy and dynamics of cold molecular ions

Multipole radiofrequency ion traps are a highly versatile tool to study molecular ions and their interactions in a well-controllable environment. In particular the cryogenic 22-pole ion trap configuration is used to study ion-molecule reactions and complex molecular spectroscopy at temperatures between few Kelvin and room temperatures. This article presents a tutorial on radiofrequency ion trap...

متن کامل

Ion Trap in a Semiconductor Chip

The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ions. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with ‘chip traps’ for confining neutral atoms, ion tra...

متن کامل

Structure of the alkali-metal-atom + strontium molecular ions: towards photoassociation and formation of cold molecular ions.

The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis set...

متن کامل

Buffer gas cooling of polyatomic ions in rf multi-electrode traps.

Cooling all degrees of freedom of a molecule, a cluster, or even a nanoparticle which is suspended in a vacuum, is an experimental challenge. Without suitable schemes, cold or ultracold chemical reactions are not feasible. Methods such as laser based preparation of very slow atoms, decelerating molecules to low velocities with electric fields or freezing molecular ions into Coulomb crystals, ar...

متن کامل

Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

For many quantum information implementations with trapped ions, effective shuttling operations are important. Here, we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012